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Abstract. There is by now a large consensus in modern monetary policy. This consensus has been built
upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend
and King [1], Clarida et al. [2], Svensson [3] and Woodford [4]. In this paper we extend the standard
optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific
form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed
form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the
standard model in a discrete time and deterministic framework produces radical changes to the major
conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main
results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path
stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria
and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where
endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly,
when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean
and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger
mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and
thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation
rate and its volatility.

PACS. 89.95.Gh – 05.45.-a Nonlinear dynamics and chaos – 05.45.Ac Low-dimensional chaos

1 Introduction

Since the early 1990s we have witnessed an increasing con-
sensus in the conduct of modern monetary policy. Good-
friend and King [1] have labelled this new consensus as
“The New Neoclassical Synthesis and the Role of Mon-
etary Policy”, while Clarida et al. [2] called it the “The
Science of Monetary Policy: A New Keynesian Perspec-
tive”. This new framework is a natural extension of the
seminal idea developed by Taylor [5], in which the cen-
tral bank should conduct monetary policy through an ag-
gressive and publicly known rule with commitment. In
fact, this emerging consensus turned upside down the ba-
sic prescriptions of monetary and fiscal policies of the
old Neoclassical Synthesis of the 60’s and 70’s, and has
led to a standard DGEM so successful that, as Laurence
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Ball [6] has recently commented, “the model is so hot that
the Keynesians and Classicals fight over who gets credit
for it”.

In this paper we extend the standard model by intro-
ducing nonlinearity into the Phillips curve. As the linear
Phillips curve seems to be at odds with empirical evidence
and basic economic intuition, a similar procedure has al-
ready been undertaken in a series of papers over the last
few years, e.g., Schaling [7], Semmler and Zhang [8], Zhang
and Semmler [9], Nobay and Peel [10], Tambakis [11], and
Dolado et al. [12]. However, these papers were mainly con-
cerned with analyzing the problem of inflation bias, deriv-
ing an interest rate rule which is nonlinear. The issue of
stability and the possible existence of endogenous cycles
in such a framework were totally overlooked in these pa-
pers. One possible justification for this fact is the type of
nonlinearity that is introduced into the standard model,
because, as it is well known in the literature, quadratic
preferences by the central bank with a convex Phillips
Curve, as the one used by most of those papers, do not
secure closed form solutions.
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In contrast, under the specific form of nonlinearity pro-
posed in our paper, which allows for convexity and con-
cavity and secures closed form solutions, we show that the
introduction of a nonlinear Phillips curve into the struc-
ture of the standard model in a discrete time and deter-
ministic framework produces radical changes to the major
conclusions regarding stability and the efficiency of mon-
etary policy under the new framework.

2 The model

Assume that the Central Bank has quadratic loss prefer-
ences over the rate of inflation (πt) and the output gap
(xt). It’s objective is to minimize the squared errors of
these two state variables with respect to their target val-
ues (π∗, x∗) fixed and publicly announced by the bank

Vt =
1
2
Et

{ ∞∑
t=0

βt
[
α(xt − x∗)2 + (πt − π∗)2

]}
(1)

where Vt is the Central Bank objective function and α is
the relative weight of the output gap in the bank’s loss
function, 0 ≤ α ≤ 1. Et is the expectation operator, and
β is the gross rate of intertemporal discount. It should be
also stressed that the parameters that reflect the options
of the Central Bank concerning optimal monetary policy
are essentially three in this model: α, x∗ and π∗. Firstly, if
α = 0, then the Central Bank is only concerned about the
control of inflation, with no concern at all about real vari-
ables like the output gap, employment, or consumption.
Secondly, if x∗ = 0 the Central Bank wants to achieve an
expected value of output exactly equal to the long term
trend value of such variable. Thirdly, if π∗ = 0 then the
Central Bank aims to achieve an expected value for the
rate of inflation that is zero over time.

The objective function is optimized subject to two con-
straints. The first is a forward looking Investment-Savings
function (IS function) derived from an optimal intertem-
poral problem in which families evaluate the trade-off be-
tween consumption vs savings and leisure vs labour and
is given by

xt = −ϕ(it − Etπt+1) + Etxt+1 + gt, x0 given (2)

where it stands for the nominal interest rate; Etπt+1 is the
private sector expected rate of inflation at t+1; Etxt+1 is
the expected output gap at t + 1; and gt stands for aggre-
gate demand shocks (e.g. changes in government expen-
ditures) and defined as an autoregressive Markov process:
gt = µgt−1+ ĝt, 0 ≤ µ ≤ 1, ĝt ∼ iid(0, σ2

g). Notice that the
term it −Etπt+1 gives the level of the real expected inter-
est rate, and ϕ > 0 is the interest elasticity with respect to
the output gap. Moreover, notice also that in this optimal
control problem the rate of interest (it) is the control or
co-state variable of the problem.

The second constraint is an aggregate supply func-
tion describing the behavior of firms. It is presented as
a new Keynesian Phillips curve, and in fact it is the old

Phillips Curve but now derived from microeconomic prin-
ciples. Following Calvo [13], at time t only a proportion of
firms (1−ν) can adjust prices due to market imperfections,
which leads to the following supply function

πt = F (xt) + βEtπt+1 + ut, π0 given, (3)

where ut is also defined by a Markov process, ut = ρ.ut−1+
ût, 0 ≤ ρ ≤ 1, ût ∼ iid(0, σ2

u).
Notice that the standard model assumes F (xt) to be

linear, F (xt) = λxt, where 0 < λ < 1 represents the level
of price stickiness in the economy (which is decreasing
in ν), such that the higher is λ, the lower is the level of
price rigidity.

The optimal intertemporal problem consists in opti-
mizing (1) subject to constraints (2) and (3). The problem
can be solved using the usual tools of dynamic optimiza-
tion. To maximize the objective function of the Central
Bank the current value Hamiltonian takes the form

ℵ(it, xt, πt) = −1
2
[α(xt − x∗)2 + (πt − π∗)2]

+ βqt+1ϕ

[
it − 1

β
πt +

1
β

F (xt)
]

(4)

+ βpt+1

[
1 − β

β
πt − 1

β
F (xt)

]
where qt and pt are shadow-prices associated with xt and
πt, respectively. Notice that, the expectations operators
for next period inflation and output gap and the stochastic
factors have been removed in the Hamiltonian, because
from now onwards we assume two crucial assumptions:
(i) we will work under a deterministic framework, and
(ii) agents are fully rational. The adoption of these two
assumptions leads to a fully deterministic perfect foresight
equilibrium and in practical terms it means that Etπt+1 =
πt+1 and Etxt+1 = xt+1.

First order necessary conditions are

ℵi = 0 ⇒ qt+1 = 0 (5)
βqt+1 − qt = α(xt − x∗) − ϕqt+1F

′(xt)
+pt+1F

′(xt) (6)
βpt+1 − pt = πt − π∗ + ϕqt+1 − (1 − β)pt+1 (7)
lim

t→+∞ qtβ
txt = lim

t→+∞ ptβ
tπt = 0. (8)

Simple manipulation of these conditions allow us to arrive
at the first equation of the reduced form of our system

xt+1 − x∗

F ′(xt+1)
=

xt − x∗

F ′(xt)
− 1

αβ
[πt − F (xt) − βπ∗ − ut] (9)

while the second equation is given by the Phillips curve.

2.1 The nonlinear case

We consider two alternative cases for the introduction of
nonlinearity into the Phillips curve. The two cases can
be separately analyzed and they depend essentially on
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whether the currently perceived output gap by the Cen-
tral Bank is higher than its target value (x0 > x∗) or lower
than the perceived value (x0 < x∗). Defining a positive
parameter φ, the two specific nonlinear functions are

F (xt) = λ[(xt − x∗)φ + (x∗)φ], x0 > x∗

F (xt) = λ[(x∗)φ − (x∗ − xt)φ], x0 < x∗.

Notice that the two above functions contain the proper-
ties required for our Phillips curve. First, for φ = 1, the
functions are identical and we are back to the linear case
(F (xt) = λxt). Second, the function can be either con-
cave or convex for both cases depending on the value of φ
and on whether the initial condition is to the left/right of
the target value of the output gap. Third, regarding the
nonlinear functions presented in the literature previously
referred to, these functions have the advantage of allowing
for closed form solutions which can be treated in an ana-
lytical way, and moreover, they also lead to both positive
and negative values of the output gap.

Under the specific nonlinear functions chosen for
F (xt), the following two systems should be evaluated in
order to derive any results from the model.

(i) x0 > x∗:

πt+1 =
1
β

πt − λ

β

[
(xt − x∗)φ + (x∗)φ

]
xt+1 = x∗ +

{
(xt − x∗)2−φ − λφ

αβ
[πt

−λ((xt − x∗)φ + (x∗)φ) − βπ∗]}1/(2−φ)
(10)

(ii) x0 < x∗:

πt+1 =
1
β

πt − λ

β

[
(x∗)φ − (x∗ − xt)φ

]
xt+1 = x∗ −

{
(x∗ − xt)2−φ − λφ

αβ
[πt

−λ((x∗)φ − (x∗ − xt)φ) − βπ∗]}1/(2−φ)
. (11)

Systems (10) and (11) change significantly the results of
the monetary policy problem as far as the standard model
is concerned. It can be shown that for several sets of pa-
rameter values the nonlinear model leads to multiple equi-
libria, and large instability arising from deterministic en-
dogenous cycles. As we can see in both systems, the power
of the second equation shows that there are always two
equilibria in each case. However, due to space limitations,
we are forced to illustrate here only one equilibrium point
of the second case above referred to (where x0 < x∗) as
this case is the one that is usually most found in contem-
porary economics.

3 Local and global dynamics

In this section we present the dynamic behavior of the
system defined in (11). There are two real equilibrium

points but only one is compatible with reasonable param-
eter value restrictions. This equilibrium point is analyt-
ically determined and discussed in what follows. Saddle-
node bifurcations are possible and a Neimark-Sacker (or
torus breakdown) bifurcation route to chaos is encoun-
tered when the parameter β is varied. Since we have power
functions we have to consider positive square powers in or-
der to ensure the existence of real iterations. This is the
reason why in the numerical examples presented below we
almost always assume φ = 1.5 (which gives 1/(2−φ) = 2).

3.1 The case: x0 < x∗

Proposition 1. The dynamic system (11) has always an
unstable equilibrium given by the following point

πt = π∗, xt = x∗ −
(

(x∗)φ − 1 − β

λ
π∗
)1/φ

.

Proof. The stability of this fixed point is analyzed using
the sufficient conditions, where J is the Jacobian matrix
computed at the fixed point.

We have then
2 +

2
β

+
λ2φ2

αβ (2 − φ)
v2 > 0 iff φ < 2

− λ2φ2

αβ (2 − φ)
v2 > 0 iff φ > 2

1 − 1
β

> 0 iff β > 1

where

v =
(

(x∗)φ − (1 − β)
λ

π∗
)φ−1

φ

.

This means that there is no stable equilibrium, indepen-
dently of the value of φ.

Analogous to the first model if we solve the conditions
1 + trace(J) + det(J) = 2 +

2
β

+
λ2φ2

αβ (2 − φ)
v2 = 0

1 − trace(J) + det(J) = − λ2φ2

αβ (2 − φ)
v2 = 0

1 − det(J) = 1 − 1
β

= 0

we may obtain the first period-doubling bifurcation loca-
tion, the Neimark-Sacker and the Saddle-Node bifurcation
points. For

π∗ =
λ

β − 1

((
2α (φ − 2) (β + 1)

λ2φ2

) φ
2(φ−1)

− (x∗)φ

)
with φ > 2

there is a period-doubling bifurcation (again, the result is
not relevant, because it implies a strong degree of nonlin-
earity). For

π∗ =
λ (x∗)φ

1 − β



198 The European Physical Journal B

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

beta

x t

lambda = 0.8, alpha = 0.1, pi* = 0.02, x* = 0.04, phi = 1.5 

Fig. 1. Bifurcation diagram for the variable xt when β is var-
ied.

we have a saddle-node bifurcation and for β = 1 there is
a Neimark-Sacker bifurcation.

We assume the following parameter calibration:
α = 0.1; π∗ = 0.02; x∗ = 0.04; φ = 1.5; λ = 0.8, and
let for now the parameter β to vary in order to study how
this parameter affects the global dynamics of the model.
As it is shown in Figure 1, when β is varied the dynamics is
characterized by high order Neimark-Sacker bifurcations,
breakdown of closed invariant curves, stretching and fold-
ing, and all this route leads the system to settle down in
chaotic dynamics.

Let us assume that β = 0.99 in order to study the im-
pact of variations on two other fundamental parameters of
the model: α, λ. When we vary these two parameters in the
interval ]0, 1[ the system is also always chaotic, with eigen-
values with modulus greater than 1; which means that the
first bifurcations occur for parameter values outside the
given intervals. Figure 2 shows the complex motion of the
model, where some stability windows, quasi-regular and
chaotic motion can be observed.

We may also analyze the impact upon the dynamics
if the central bank decides to accept higher target values
for the output gap (x∗). Figure 3 shows the bifurcation
diagram of the variable πt when x∗ is increased, illustrat-
ing several stability windows, where high order Neimark-
Sacker bifurcations take places. In these windows several
closed invariant curves start to stretch and fold, and after
all breakdown and join in a chaotic attractor. We can also
observe the increasing of volatility in the inflation rate if
the central bank fixes a target value for the output gap
relatively high.

Finally, Figures 4 and 5 show the attractor and the cor-
respondent time series of the rate of inflation for the cali-
bration above presented, with a small difference. While the
former assumes all the values of the calibration, including
the values for the target variables (π∗ = 0.02, x∗ = 0.04),
the latter takes a slightly change in the values of these pa-
rameters (π∗ = 0.03, x∗ = 0.06). The initial conditions are

Fig. 2. Bifurcation diagram for the inflation rate (π) when α
and λ are varied.
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Fig. 3. Bifurcation diagram for the inflation rate (π) when the
target value for the output gap (x∗) is increased.

x(0) = 0.01; π(0) = 0.02 so that the condition x0 < x∗ is
satisfied. Two points should be highlighted. First, the time
series show figures for the rate of inflation that are not far
from those we find in contemporary advanced economies.
Secondly, the mean of the rate of inflation in each sim-
ulation is very close to the target value of the Central
Bank; however, there is significant volatility showing that
the bank may have some control on inflation but it is very
hard to control the rate in a very efficient way (that is, to
reduce or eliminate the volatility in inflation).

4 Conclusions

A nonlinear Phillips curve produces radical changes
to the major conclusions regarding stability and the
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Fig. 4. Strange attractor and time series of πt variable.
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Fig. 5. Strange attractor and time series of πt variable.

efficiency of monetary policy. The main results are the
following: (i) instead of a unique fixed point we end
up with multiple equilibria; (ii) instead of saddle-path
stability, for different sets of parameter values we may
have saddle stability, totally unstable equilibria and
chaotic attractors; (iii) for certain degrees of convexity
and/or concavity of the Phillips curve, where endogenous
fluctuations arise, one is able to encounter some results
that seem intuitively correct. Firstly, when the Central
Bank pays attention essentially to inflation targeting, the

inflation rate has a lower mean and is less volatile (as one
can see in the upper panelof Fig. 2). Secondly, changes in
the degree of price stickiness may (or may not) affect the
levels of the mean and the variance of the inflation rate,
depending on the specific values of the various parame-
ters (see the lower panel of Fig. 2). Thirdly, the higher
the target value of the output gap chosen by the Central
Bank, the higher is the inflation rate and its volatility (see
Fig. 3).

Moreover, the existence of endogenous cycles due to
chaotic motion may raise serious questions about whether
the old dictum of monetary policy (that the Central Bank
should conduct policy with some level of discretion in-
stead of pure commitment) is not still in the business of
monetary policy.
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